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Abstract— The decentralized detection performance, using
wireless passive sensor networks, is analyzed according to
the minimum probability of error criterion. Passive sensors
communicate their measurements to the reader using data
network packets, and therefore, the two main phenomena
affecting the detection performance are packet loss and packet
delay. In this paper, we formulate the decentralized detection
problem with passive sensors and show that the optimal decision
rule with packet loss is the likelihood ratio test. We present a
comparative analysis study between detection with ideal and
non-ideal channels, for the problem of DC level detection in
White Gaussian Noise. We validate the analytical results using
Monte Carlo Simulation study. Finally, we present a simple
scheme for adaptive detector design, to restore the original
detection performance, with the cost of increasing the delay for
detection.

I. INTRODUCTION

Decentralized Detection (DD) has been an active area of
research in the last two decades. In DD, a group of nodes
sense the environment, and collaborate with each other to
reach a final decision about the state of nature. Different
architectures have been proposed for the communication
between nodes. In a fully distributed architecture, nodes
communicate with each other to reach a final decision, with
no fusion center. On the other hand, in the serial architecture,
nodes are arranged in tandem, and every node passes its
decision to the following node, with the last node taking
the final decision. In the decentralized architecture, nodes
communicate only with a central location, called the fusion
center, which analyzes the information and makes the final
decision [18]. The decentralized architecture has attracted
considerable attention in the research community due to
its practical significance and analytic tractability. The main
problem in decentralized detection is to design both the
optimal local decision rules and the fusion rule to detect
events as accurately as possible [2].

Emergence of wireless sensor networks has produced a
new paradigm for decentralized detection. The main differ-
ence comes from the fact that wireless sensors communicate
their measurements to the fusion center over an unreliable
communication channel, and therefore, perfect information
is no longer available at the fusion center. This fact was
overlooked in early developments of the field.

In the last few years, passive wireless sensors have started
to emerge as a replacement technology for powered sensors
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in many different fields. The main attraction for passive
sensors is that they do not need any power source. The basic
idea is to use a powered reader to poll the data from the
different passive sensors. A passive sensor uses the incident
power from the reader to energize its local circuitry. A variety
of ways exist for the sensor to modulate the reader incident
wave and relay its measurement back to the reader. The most
popular example for this architecture is RFID technology [8].

Motivated by RFID technology, various sensors have been
integrated with RFID tags [14]. In this integrated architec-
ture, passive sensors communicate arbitrary sensor data by
emulating an RFID tag. The tag ID encodes the desired
sensor data, and through a specially-designed software in
the reader, sensor data submitted in the payload of the RFID
tag data packet can be decoded. This integration adheres to
RFID industry standards, and therefore, it is compatible with
a variety of RFID readers.

The decentralized detection problem, using wireless pas-
sive sensor networks, is different from the classical decentral-
ized detection problem in several different aspects. Passive
sensors communicate their measurements to the reader using
data network packets, adhering to strict communication pro-
tocol standards. Accordingly, the effect of the communication
channel on the received waveforms is of interest only to
the detection task performed by the communication system
at the physical layer level, to infer the transmitted symbol
(representing a string of bits). As far as the sensor data (in
the packet payload) is concerned, the data may not arrive at
all, or it may arrive with arbitrary delay.

Another property of passive sensors is that they lack
sufficient computational power to preprocess measurements
before they are submitted to the fusion center. Therefore,
we have to assume that either the raw measurements are
submitted directly, or a very limited preprocessing takes
place at the node. The preprocessing time is limited by the
amount of time that the reader supplies power to the sensors,
and this is the polling period. Also, the reader polls different
sensors at the same time over a shared communication media,
which can give rise to collisions, packet loss, and packet
delay. Finally, the reflected signal from passive sensors are
very weak, due to regulatory laws for RFID power, and hence
the detection task becomes much more difficult since the
signal to noise ratio is not completely under the designer’s
control.

In previous work, we studied the degradation in the
detector performance as a result of channel imperfection
[15], using the Neyman-Pearson (NP) formulation. We as-
sumed a single passive sensor to reader communication



over a Bernoulli channel, to model the missing observations
effect of a typical data network. We obtained the detector
performance analytically and by Monte Carlo simulations,
and proposed a heuristic approach to restore the detector
performance, by increasing the number of samples, and
hence increasing the detection delay.

In this paper, we apply the Maximum Likelihood (ML)
criterion to study the detection performance in wireless
passive sensors. This is a special case of the minimum
probability of error criterion. We formulate the detection
problem and derive the optimal fusion rule with a non-
ideal communication channel between the reader and passive
sensors. We present a comparative analysis between detector
performance with ideal and non-ideal channels.

The rest of the paper is organized as follows: In Section III,
we formulate the detection problem using wireless passive
sensors. Section IV presents the classical results of detection
performance with minimum probability of error criterion. In
Section V, we derive the optimal decision rule for the detec-
tor with packet loss. We present a comparative analysis, using
a DC level detection problem as a case study. In Section
VII, we propose a simple adaptive architecture to restore the
original detector performance, Finally, we conclude the work
with future research directions in section VIII.

II. RELATED WORK

The research on decentralized detection is largely at-
tributed to the seminal work of Tenney and Sandell [16].
The optimal decision rules for the local nodes and the
fusion center are derived under various problem settings
and different optimality criteria. Optimal data fusion rule is
derived in [1]. The optimality of the likelihood ratio for local
nodes decision is proved in [18]. Detection performance with
node failures is studied in [13]. For a more comprehensive
survey in this area, the readers are referred to [2], [4] and
the references therein. Decision fusion with network delays
and channel errors has been considered in [17].

For DD with WSN, different constraints are studied and
included in the design process. Channel-aware decision fu-
sion for fading channels, given fixed local decision rules, is
studied in [3], with the problem revisited in [12] to relax
the assumption of channel state information availability at
the fusion center. Distributed detection with channel errors
is studied in [10], assuming Binary Symmetric Channel. The
optimality of the Likelihood Ratio (LR) test for local sensor
decisions, with a non ideal channel, is proved in [5]. The
detection and estimation performances, when the sensors
and the fusion center communicate over multi-access fading
channel are studied in [11], where it is assumed that the
sensor transmits to the fusion center the type of the sensor
observations. The design of the optimal quantizer and fusion
rule, using both Bayesian and Neyman-Pearson approaches,
when the transmission is subject to noise and inter-channel
interference is discussed in [6]. The distributed detection
problem over Multiple Access Channel (MAC), as opposed
to the traditional assumption of parallel access channel, is
studied in [9].

The performance analysis for NP detectors, with non-
ideal channel, is studied in [15]. A Bernoulli communication
channel is assumed, and closed form expressions are derived
for the performance metrics provided a sufficient statistic
exists for the data samples. The analysis is augmented by
Monte Carlo Simulation studies, and an adaptive detector
design is proposed, with the penalty of increasing the delay
for detection.

III. PROBLEM FORMULATION

Figure 1 illustrates the detection system architecture. We
consider the problem of signal detection using a collection
of l passive sensors, measuring the same phenomenon, and
polled by a common reader. Passive sensors have no power
source, and are awakened by the polling signal of the reader,
to submit their information. We assume the passive sensor
has limited computational power, and since it is active
only during the polling cycle, we assume it samples the
sensed signal, time-stamps the raw observation, and submits
it without preprocessing, to the reader. We further assume
that the underlying communication protocol handles the
synchronization between the reader and the passive sensors.

For each polling cycle, every passive sensor submits its
measurement over the shared multi-access channel. Since the
communication channel is shared, collisions are likely. We
assume that the data from the colliding sensors is lost. We do
not assume that collided packets will be retransmitted for two
reasons; (1) the passive sensor has to have built in memory
to store the previously-submitted information, which it has
to retransmit again in case of a collision, and (2) outdated
data may not be useful.

At the end of every polling cycle, the reader collects
the observations and arranges them chronologically, using
their time-stamps. The reader takes a decision based on
the collected data vector, x, regardless of the number of
observations received. This is required in detection systems,
since the delay of detection is one of the performance
metrics. We designate the polling cycle time by Tp. The
reader in this system architecture has the additional role of
the data fusion center in the classical decentralized detection
approach.

We use a probabilistic model for the communication
channel. At the end of the polling cycle time, Tp, there
are a number of observations received, viz. K. This is
a random variable, characterized by its Probability Mass
Function (PMF) pK(k). Since any practical channel has a
finite capacity, the maximum value of the realization of
K has an upper bound N . The lower bound is 0, which
represents the case of receiving no observations during a
time period Tp. The latter case is not expected for any useful
practical channel.

In the ideal channel case the reader has complete in-
formation about the measurements. Therefore, we expect
a degradation in the detection performance. The work in
this paper quantifies the performance loss, and attempts to
recover the original detector performance.
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Fig. 1. Detection with passive sensors

IV. PRELIMINARIES

We consider the binary hypothesis testing problem where
the state of nature is represented by one of two hypotheses,
H0 and H1, with prior probabilities P (H0) and P (H1),
respectively. An observation vector, x, is used to statistically
validate one of the two hypotheses. The decision is governed
by the minimum probability of error criterion, for minimizing
the average probability of error, Pe. The probability of error
is defined as:

Pe = P [Hi|Hj ] i, j ∈ {0, 1}, i 6= j (1)

and the average probability of error is given by:

E[Pe] = P [H1|H0]P [H0] + P [H0|H1]P [H1] (2)

The optimal test to minimize the probability of error is
given by:

P [x|H1]
P [x|H0]

H1

≷
H0

P [H0]
P [H1]

When prior probabilities are equal, the test reduces to de-
ciding the hypothesis with the larger conditional likelihood,
P (x|Hi), i ∈ {0, 1}.

Since the hypotheses H0 and H1 are random variables, the
probability of error, Pe, is also a random variable with two
possible outcomes, Pm = P (H0|H1) and Pf = P (H1|H0),
and probabilities P (H1) and P (H0), respectively. The ran-
dom variable Pe(.) is defined over the sample space ΩH =
{H0,H1}. This viewpoint becomes useful when extended to
include the probabilistic channel effect, in Section V.

V. OPTIMAL DECISION RULE

The introduction of the probabilistic channel model be-
tween the reader and passive sensors changes the sample
space over which the random variable Pe is defined. If
we define the sample space for the random variable K,
representing the number of samples received in a time period

Tp, by ΩK = {0, 1 · · ·N}, then the new sample space for
Pe is given by:

Ωpe
= ΩH × ΩK = {(H0, 0), (H0, 1) · · · , (H1, N)}

and the probability of error is defined as:

Pe = P [Hi|Hj , k] i, j ∈ {0, 1}, k ∈ {0, 1 · · · , N} (3)

and the average probability of error is given by:

E[Pe] =
1∑

i,j=0
i 6=j

N∑
K=1

P [Hi|Hj ,K]P [Hj ,K]

=
1∑

i,j=0
i 6=j

N∑
K=1

P [Hi|Hj ,K]P [Hj ]P [K] (4)

since the hypotheses Hi, i ∈ {0, 1}, and the number of
observations K are independent. If the prior probabilities are
equal, i.e. P [H0] = P [H1] = 1

2 , then the average probability
of error is given by:

E[Pe] =
1
2

1∑
i,j=0
i 6=j

N∑
K=1

P [Hi|Hj ,K]P [K] (5)

The optimal decision rule that minimizes E[Pe], in Equa-
tion (4), could be derived as follows:

E[Pe] =

N∑
k=1

P [k] (P [H0|H1, k]P [H1] + P [H1|H0, k]P [H0])

=

N∑
k=1

P [k]

[∫
Rk

0

P [x|H1, k]P [H1] +

∫
Rk

1

P [x|H0, k]P [H0]

]

=

N∑
k=1

P [k]

∫
Rk

0

(P [x|H1, k]P [H1]− P [x|H0, k]P [H0])

where Rk0 and Rk1 represent the decision regions for hypoth-
esis H0 and H1, respectively, when the number of samples
received at the reader is equal to k. The average probability
of error is minimized by including x in Rk0 when the quantity
between brackets is negative:

P [x|H1, k]P [H1]− P [x|H0, k]P [H0] < 0

Equivalently, the decision rule is given by:

P [x|H1, k]
P [x|H0, k]

H1

≷
H0

P [H0]
P [H1]

(6)

Hence, the optimal decision rule with missing observations
is the likelihood ratio test.

Section VI presents an example detector and illustrates the
difference between the performance with the ideal channel,
given by Equation (2), and the performance with the non-
ideal channel, given by Equation (5).



VI. ML DETECTION-DC LEVEL IN WGN

In this section, we consider the problem of detecting a
known DC level in White Gaussian Noise (WGN), using the
passive sensor network architecture illustrated in Figure 1.
The problem is formulated as:

H0 : x[n] = ω[n]
H1 : x[n] = A+ ω[n]

where n = 0, 1, ..., N − 1, x[n] represents the sample
sequence, A is the known DC level to be detected, and w[n]
represents WGN with zero mean and variance σ2.

A. Probability of Error Distribution

In case of WGN, it can be shown that the test statistic
reduces to the sample mean, and therefore, Pe is given by
[7]:

Pe = Q

(√
NA2

4σ2

)
H0,H1 (7)

where Q(.) is the error function defined by:

Q(x) =
∫ ∞
x

1√
2π
e−

1
2 t

2
dt

Now we assume a communication channel modeled as an
IID Bernoulli random process, with a probability of missing
an observation λ. The total number of observations received
at the reader for the Bernoulli channel is given by:

P [K = k] =
(
N

k

)
(1− λ)kλ(N−k) (8)

To use Equation (3), we note that the optimal decision rule
with packet loss (Equation (6)) results in the same test
statistic, the sample mean. Accordingly:

P [H0|H1, k] = P [H1|H0, k] = Q

(
A/2√
σ2/k

)
(9)

and the probability of error, Pe, is given by:

Pe = Q

(√
KA2

4σ2

)
Hi,K (10)

Figure 2 illustrates the PMF for the random variable Pe
with ideal channel (Equation (7)), and Bernoulli channel
(Equation 10), for the parameters in Table I. Since the
probabilities are symmetric under H0 and H1, only one
case is shown. It is clear how the distribution of Pe spreads
over with non-ideal channel, and therefore, E[Pe] for the
non-ideal channel case is anticipated to be higher, and
accordingly, the detector performance is degraded. This fact
is confirmed and quantified in the next section.

TABLE I
DETECTOR PARAMETERS

Parameter A σ N λ
Value 0.2 1 50 0.2
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Fig. 2. Probability Mass Function for Pe, ideal versus Bernoulli channel

B. DETECTION PERFORMANCE

The expected value of Pe with ideal channel is obtained
by applying Equation (7) to Equation (2):

E[Pe] = Q

(√
NA2

4σ2

)
(11)

The expected value of Pe with Bernoulli channel is
obtained by applying Equation (10) to Equation (5):

E[Pe] =
N∑
k=1

(
N

k

)
(1− λ)kλ(N−k)Q

(√
kA2

4σ2

)
(12)

We note that equation (12) reduces to equation (11) when
λ = 0.

Example 1. Assume we have an ML detector with the
parameters shown in Table I. With an ideal channel, we use
Equation (11) to get E[Pe] = 0.2398. With the Bernoulli
channel, and packet drop rate λ = 0.2, and using Equation
(12), we get E[Pe] = 0.2637. The degradation in the
performance is best illustrated by the error probability curve,
as explained in the next section.

C. ERROR PROBABILITY CURVE

Figure 3 plots Equation (12), for different values of λ,
including the ideal case (λ = 0), using the parameters in
Table I. The performance degradation is clear, where E[Pe]
increases, for the same number of samples, with increasing
λ.

To verify the analytical results, Monte Carlo simulation
experiments are conducted. Samples are generated from two
different Gaussian distributions (corresponding to the two
hypotheses), with equal probability. A Bernoulli channel is
introduced in the signal path to the detector. The detector
calculates a running average, and it ignores dropped ob-
servations. The detector compares the running average to a
threshold value A/2. The error occurs if the running average
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exceeds A/2 and the true hypothesis is H0, or if the running
average is less than A/2 and the true hypothesis is H1. For
every value of the number of samples for the detector, N ,
10,000 Monte Carlo trials are performed to get an accurate
value for E[Pe]. Table II lists the parameters used in the
simulation experiment.

TABLE II
MONTE CARLO SIMULATION PARAMETERS

Parameter A σ N λ
Value 0, 0.2 1 (5 : 100) 0, 0.3

Figure 4 shows the theoretical E[Pe]−N curve (Equation
(12)) versus the curve obtained from Monte Carlo simulation,
for λ = 0 and λ = 0.3. As illustrated in the figure, the
two curves for each value of λ are very similar. The minor
difference is a result of Monte Carlo simulation accuracy.
Asymptotically (MC trials → ∞), the two curves for each
value of λ coincide.
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VII. ADAPTIVE DETECTOR DESIGN

To compensate for the degradation in the performance of
the detector, we need to equate the expressions for E[Pe]

before and after the degradation:

P [H1|H0]P [H0] + P [H0|H1]P [H1] =
N∑

k=1

P [k] (P [H1|H0, k]P [H0] + P [H0|H1, k]P [H1]) (13)

The degrees of freedom for Equation (13) are the upper
bound for the number of samples, N , and the channel proba-
bilistic distribution P [K]. The channel distribution could be
controlled by modifying N , as can be easily shown in the
Bernoulli channel example discussed in section V. Increasing
N can be achieved in one of two ways: (1) increasing the
channel capacity, and (2) increasing the reader polling cycle
time, Tp. While the first option has no impact on the detector
performance, the latter adds to the delay for detection.

For the DC level detection problem, discussed in section
VI, we need to find the minimum value for N that restores
the original detector performance E[Pe] = α:

min
E[Pe]

N

N∑
k=1

(
N

k

)
(1− λ)kλ(N−k)Q

(√
kA2

4σ2

)
− E[Pe] = 0

subject to E[Pe] = α

Since N is a monotonically decreasing function of E[Pe], as
Figure 3 illustrates, we do not need to solve the optimization
problem. We can obtain the value of N by directly solving
the following equation numerically:

M∑
k=1

(
M

k

)
(1− λ)kλ(M−k)Q

(√
kA2

4σ2

)
− α = 0 (14)

where N = dMe
By solving Equation (14) for N , given different values

of the channel drop rate, λ, we get an N − λ relationship,
where the channel drop rate, λ, is plotted on the abscissa (0 ≤
λ ≤ 1) and the corresponding number of samples required to
restore the performance, Ñ , is plotted on the ordinate. Figure
5 illustrates the N − λ curve for the example detector given
in this paper, with parameters as in Table I. It is shown that
the number of samples approximately doubles with a drop
rate λ = 0.5, and the curve exhibits an exponential behavior
thereafter.
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The curve in Figure 5 can be used to estimate the num-
ber of samples required to achieve a specific performance
measure, under different channel conditions. If the channel
statistical parameters can be estimated online, then the curve
can be used to adapt the detector online, by changing the
number of samples N according to the current channel
drop rate. As mentioned before, N could increase by either
increasing the channel capacity, or adding more passive
sensors.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have formulated the decentralized de-
tection problem, using wireless passive sensors. We used
the practical fact that wireless sensors communicate mea-
surements using data network packets, and therefore, we
have studied the effect of dropped packets on the detection
performance. We have shown that the optimal decision rule,
according to the minimum probability of error criterion,
reduces to the likelihood ratio test, when we account for
the non-ideal channel between the reader and the passive
sensors. We have presented a comparative analysis between
the detection performance with ideal and non-ideal channels,
using the problem of DC level detection in WGN. We have
quantified the loss in the detector performance, and presented
a simple adaptive method to restore the original detector
performance, with the drawback of increasing the delay for
detection.

In this paper, we have also studied the effect of packet drop
on the detection performance. Packet delay is another phe-
nomenon in data networks that affects the detection process.
This is currently under study. Also, in the adaptive algorithm
described in this paper, we assumed that increasing the
number of samples has no effect on the channel parameters.
In wireless passive sensor networks, increasing the number
of samples is achieved by adding more sensors, which causes
an increase in the collision rate, and hence changes in the
probabilistic channel model. We are currently studying this
problem in more detail.
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